강재 영구거푸집을 사용한 시스템 기둥의 거동에 관한 실험적 연구

An experimental study on the behavior of system columns reinforced with steel sheet forms and angles

이 이 수 진* 김 상 연" 윤 영 호*** 김 형 근**** 김 성 배**** 이 창 남""" Lee, Su-Jin Kim, Sang-Yeon Yoon, Yeong-Ho Kim, Hyunh-Geun Kim, Sung-Bae Lee, Chang-Nam

..... Abstract

In recent, there are a lot of problems such as shortage of construction workers, complicate progress of work and so on under RC construction. To solve these problems, the construction methods without form-work are used in the main structural members - beam, slab and stairs. However, there isn't yet form-workless system for columns. The purpose of this study was to experimentally evaluate the structural behavior of no-form system columns reinforced with steel sheet forms and angles. The main variables are 1) effect of section size of \neg -angle, 2) slenderness of column(L/B=5.0, 7.5, 10.0), 3) eccentricity (e=2.5cm, 5.0cm, 7.5cm).

키워드 : 기둥, 강재거푸집, y형 강판, 구조성능

keyword : column, steel sheet forms, y-shape sheets, structural behavior

.....

.....

1. 서론

현재 국내의 건설 산업은 현장 기능 인력의 부족, 이로 인한 현장 시공 품질관리의 어려움 및 후분양 제도의 도 입 등으로 인한 공기단축의 필요성이 증대되고 있다. 또 한 시간이 지남에 따라 급속도록 바뀌고 있는 거주자의 다양한 요구를 수용하기 위한 공간의 가변성 실현을 위 한 새로운 구조형식을 필요로 하고 있다. 뿐만 아니라 도 심지의 적은 공간을 최대로 활용하여 건물의 유효공간을 확보할 수 있는 시스템을 필요로 하고 있다. 이러한 복잡 하고 다양한 요구를 수용하기 위하여 기존의 철근콘크리 트조, 철골조 등의 단일 구조가 아닌 두 시스템의 장점을 혼용한 합성구조에 대한 연구가 슬래브와 보 등의 일부 에서 개발되어 적용되고 있으나 기둥에 있어서는 국·내 외적으로 콘크리트 충전 강관(CFT)기둥만이 개발되어 적 용되고 있다.

CFT기둥은 각형 또는 원형 강관에 콘크리트를 채워 넣는 형식으로, 강관의 구속 효과로 충전콘크리트의 내력 상승과 충전콘크리트에 의한 강관의 국부좌굴 보강 효과 로 단면 크기의 증가 없이 내력이 상승하고 뛰어난 변형 성능을 증가시킬 수 있고, 내진성능이 우수한 시스템이

* 정회원, 대한주택공사 주택도시연구원 연구원

** 정회원, 대한주택공사 주택도시연구원 책임연구원

다. 또한, 거푸집공사 작업이 필요 없어 공기단축에도 효 과적이다. 하지만, 내부 콘크리트 충전상태의 육안 확인 및 보-기둥 접합부 시공의 어려움, 철골 또는 철근콘크리 트 기둥에 비해 비싼 공사비 등으로 국내에서는 아직까 지 적용이 미흡한 상태이다.

따라서 본 연구에서는 철근콘크리트 기둥의 배근과 거 푸집 공사를 생략함으로써 공기단축이 가능한 무(無)거푸 집 공법으로 개발된 강재 영구거푸집 시스템 기둥 (System columns reinforced with steel sheet forms and angles)의 구조성능을 ㄱ-형강의 단면크기, 세장비, 편심 비를 주요변수로 실험적으로 파악하고자 한다.

2. 실험체 및 실험 방법

2.1 실험체의 개요

본 실험에서는 강재거푸집을 이용하여 철근콘크리트기 등을 무(無)거푸집 시스템기둥의 구조적 성능을 평가하기 위하여 그림 1과 같이 단면 성능 상 가장 효율적인 위치 인 네 모서리에 주근 역할을 하는 ㄱ형강을 배치하고, 띠 철근 대신 y형 강판을 ㄱ형강에 부착하여 내부에 콘크리 트를 채운 기둥 실험체를 제작하였다. 본 실험의 주요 변 수로는 표 1에 정리된 것과 같이 ㄱ-형강의 강재량에 따 른 하중 분담량을 확인하기 위하여 ㄱ-형강의 단면크기 와 일반적인 단주 설계 범위에서의 세장효과에 따른 강 도 변화에 대하여 알아보기 위하여 기둥의 세장비 및 기 등에 작용하는 휨모멘트의 영향을 평가하기 위하여 편심

^{***} 정회원, 대한주택공사 주택도시연구원 수석연구원, 공학박사

^{****} 정회원, 서울도시개발공사 구조팀장 ***** 정회원, (주)센구조연구소 연구개발팀 팀장, 공학박사

^{******} 정회원, (주)센구조연구소 대표이사

비로 하였다. ㄱ-형강의 단면크기 변수에 대해서는 L-40×40×3, L-45×45×4, L-50×50×4, L-50×50×6의 4개 실험체, 세장비 변수는 높이/폭(L/B)를 5.0(100cm), 7.5(150cm), 10.0(200cm)로 3개 실험체, 편심하중을 받는 기둥은 편심 위치가 기둥 중심에서 단부까지 거리(10cm) 의 1/4(2.5cm), 2/4(5.0cm), 3/4(7.5cm)가 되는 6개의 실험체 로 총 13개의 실험체를 제작하였다. 실험체의 단면크기는 20cm×20cm로 하였으며, 플레이트 두께는 0.5mm로 하였다.

그림 t. 실험체 형상 및 치수(기준 실험체)

표 1. 실험체 일람표

시청궤	L/B	편심	ㄱ-형강			
걸입세		(e,cm)	길이(mm)	두께(mm)	<u>단면적(cm')</u>	
SC-L43LB5S	5	0	40	3	2.34	
SC-L44LB5S			45	4	3.49	
SC-L54LB5S			50	4	3.89	
SC-L56LB5S			50	6	5.64	
SC-L44LB5E0	5	0	45	4	3.49	
SC-L44LB75E0	7.5					
SC-L44LB10E0	10					
SE-L44LB5E25		2.5				
SE-L44LB5E50	5	5.0	45	4	3.49	
SE-L44LB5E75		7.5				
SE-L44LB75E25		2.5			3.49	
SE-L44LB75E50	7.5	5.0	45	4		
SE-L44LB75E75		7.5				

 $\underline{SC}\text{-}\underline{L43}\ \underline{LB5}\ \underline{E25}$

- 편심거리 E0:중심압축, E25:2.5cm, E50:5.0cm, E75:7.5cm, S: Stub Column - 기둥의 세장비 LB5:L/B=5,LB75, L/B-7.5, LB10:L/B=10 - L형강의 종류 L43: L-40×40×3 ,L44: L-45×45×4 L54: L-50×50×4, L56: L-50×50×6 - 실험체 구분 SC:중심압축, SE:편심압축

2.2 재료실험

실험체에 사용된 콘크리트의 배합비는 표 2와 같다. 공시체는 시험체 제작 시 동일한 조건으로 제작하여 양 생(28일) 후 실험시점에서 시험한 결과 압축강도 321.45 kgf/cm를 얻었다. 강재의 인장강도는 fy=2400kgf/cm이다.

표 2.. 콘크리트의 배합비

설계강도	W/C	S/A	단워 골재량 (kgf/m³)				
(kgf/cm)			W	C	S	G	
270	46.0	40.5	177	385	736	1101	

2.3 실험방법

실험체의 가력은 200tf의 UTM을 사용하여 그림 2와 같이 중심압축 가력과 그림 3과 같이 편심압축을 하였으 며, 처짐량을 측정하기 위해 가력점의 하부와 기둥의 앞 뒤의 중앙부에 변위계를 설치하였다.

스트레인게이지는 모든 실험채에 대하여 그림 2와 같 이 인장응력을 받는 기둥 상부에서 1/4, 2/4, 3/4 지점에 2개의 ㄱ-형강에 6개, 플레이트에 3개를 부착하여 총 9개 를 부착하였다. 편심하중을 받는 실험체에 대해서는 3모 서리의 ㄱ-형강에도 스트레인게이지를 부착하여 편심의 영향에 대해서도 측정하였다.

그림 2. 기둥 실험체 가력도 (중심축하중)

그림 3. 기둥 실험체 가력도 (편심축하중)

3. 실험 결과 및 분석

3.1 실험결과

실험체의 최대하중과 최대변위는 표 3과 그림 4와 같 다. 이 때 이론적인 최대내력과 설계내력은 철근콘크리트 의 기둥하중 산정식을 적용하였다. 단, 세장비의 효과에 대해서 검토한 실험체의 경우 앞서 언급한 것과 같이 단 주 설계 범위에서의 세장효과에 따른 변화를 살펴보기 위한 것으로 단주의 설계식을 적용하였다.

전체적으로 실험에 의한 최대내력이 이론적인 최대내 력에 비해 약 10~20%이상 크게 나타났으며, 설계내력에 비해서는 약 75~100%이상 크게 나타났다.

표 3. 실험결과

	실험값			이론값 ¹⁾			실험/이론(%)	
실험체명	P _{max} (tf)	M _{max} (tf.m)	δ _{max} (mm)	Po (tf)	¢P _n (tf)	Mn (tf.m)	P _{max} /P _o	P _{max} / # P _n
SC-LA3LB5S	136.32	-	4.19	123.50	60.67	-	110.4	224.7
SC-L44LB5S	146.16	-	4.27	132.52	65.89	ł	110.3	221.8
SC-L54LB5S	154.64	-	4.84	136.36	68.04	-	113.4	215.2
SC-L56LB5S	166.76	-	4.62	149.07	75.51	-	111.9	227.3
SC-L44LB5E0	162.56		4.77	132.52	65.89	4	122.7	220.8
SC-L44LB75E0	141.64	-	5.70	132.52	65.89	-	106.9	246.7
SC-L44LB10E0	147.92	-	7.55	132.52	65.89	-	111.6	215.0
SE-L44LB5E25	117.80	2.94	4.04	102.79	63.67	1.59	114.6	185.0
SE-L44LB5E50	95.56	4.78	4.21	80.51	50.12	2.51	118.7	190.7
SE-L44LB5E75	78.20	5.86	5.01	65.18	41.14	3.08	120.0	190.1
SE-LA4LB75E25	116.96	2.92	5.41	102.79	63.67	1.59	113.8	183.7
SE-L44LB75E50	92.52	4.63	5.21	80.51	50.12	2.51	114.9	184.6
SE-L44LB75E75	72.52	5.66	6.28	65.18	41.14	3.08	111.3	176.3

1) 철근콘크리트 기둥 산정식

 $(1) P_o = f_{ck} (A_g - A_{st}) + f_y A_s \quad (2) \phi P_n = 0.80 \phi \left[0.85 f_{ck} (A_g - A_{st}) + f_y A_{st} \right]$

3.2 하중-변위 곡선

3.2.1 ㄱ-형강의 단면크기에 따른 비교

그림 5는 ㄱ-형강의 단면크기에 따른 실험체의 하중-변위 곡선을 나타낸 것이다. SC-LB5S 시리즈 실험체의 경우 초기강성은 단면크기와 관계없이 일정하였으나, 단 면크기가 커질수록 최대내력이 크게 나타났으며, 최대내 력에 도달 후 취성적인 파괴가 아니라 연성적인 거동을 하는 것으로 나타났다. 또한, 최대내력에 도달 후 그래프 가 꺾어진 후에 변위가 7~10mm되는 부분에서 더욱 완만 한 곡선을 나타내고 있는데 이 때 콘크리트의 파괴와 함 께 플레이트와 앵글의 용접부의 탈락이 발생하기 때문이 라 판단된다.

3.2.2 세장비에 따른 비교

그림 6은 세장비에 따른 실험체의 하중-변위 곡선을 나타낸 것이다. SC-L44LB5E0 실험체의 최대하중은 161.9tf 으로 최대하중이 가장 크게 나왔으며, SC-L44LB75E0 실험 체가 140.7tf으로 SC-L44LB5E0 실험체에 비해 86.9%로 가장 적게 나왔다. 세장비가 커질수록 초기강성이 저하하 는 경향이 보였다. 이와 함께 세장비가 커질수록 최대내 력이 줄어드는 경향이 있을 것으로 예측하였으나, 상이한 결과가 나온 것은 실험 과정에서 편심이 작용하였기 때 문이라 판단된다.

그림 6. 세장비에 따른 하중-변위 곡선

그림 7. 편심에 따른 하중-변위 곡선(L/B=5.0)

그림 8. 편심에 따른 하중-변위 곡선(L/B=7.5)

3.2.3 편심에 따른 비교

그림 7과 8은 각각 세장비가 5.0과 7.5인 경우에 편심 을 받는 실험체의 하중-변위 곡선을 나타낸 것이다. 세장 비가 5.0인 경우, 편심량에 관계없이 초기 강성은 유사하 게 나타났지만, 2차 강성은 편심량이 커질수록 작아지는 현상을 보였다. 최대하중은 편심이 없는 SC-L44LB5E0 실험체의 하중 161.98tf을 기준으로, SE-L44LB5E25, SE-L44LB5E50, SE-L44LB5E75 실험체는 각각 기준 실 험체 대비 72.2%, 58.6%, 47.1%로 편심의 크기에 반비례 하고 있다. 하지만, 최대하중 이후 거동은 편심량이 커질 수록 완만하게 저감하는 경향이 나타났다. 세장비가 7.5 인 경우, 세장비 5.0인 경우와 유사한 거동을 나타냈다. 초기 강성은 세장비와 관계없이 유사하며, 2차 강성은 편 심 크기에 반비례해서 작아지는 경향을 나타냈다. 또한, 최대강도 역시 SE-L44LB50 시리즈와 유사하게 편심의 크기가 커질수록 최대강도는 작아지는 경향을 보였다.

3.3 파괴 양상

모든 실험체의 파괴 양상은 최대 하중에 도달하기 전 에 실험체 내부의 콘크리트의 압축 파괴 소리가 발생하 면서, 플레이트의 배부름이 발생하였다. 점점 배부름이 더욱 진행되면서 최대하중에 도달한 후 ㄱ-형강의 국부 좌굴이 발생하였으며, 최종 파괴는 그림 9 (d)와 같이 플 레이트와 ㄱ-형강의 용접부에서 강관의 찢어짐과 함께 하중 저감이 발생하였다. ㄱ-형강의 국부 좌굴 발생 위치 는 실험체의 1/2 위치에서 주로 발생하였다. SC-L44LB5 와 SC-L54LB5의 경우 부분적으로 기둥의 1/4인 지점에 서 ㄱ-형강의 국부 좌굴이 발생하였다. 이는 실험 시 약 간의 편심에 의해서 발생했을 것으로 판단된다.

SC-L44LBE0 시리즈 실험체의 경우 그림 9 (c)와 같이 세장비가 커질수록 기둥의 상부에서의 국부 좌굴이 발생 이 커졌으며, 편심하중을 받은 SE-L44LB5, SE-L44LB75 시리즈 실험체의 경우 편심이 커질수록 앵글의 국부좌굴 이 크게 발생하며, 기울어짐이 커지게 나타났다.

4. 결론

강재 영구거푸집을 사용한 시스템 기둥의 구조적 거동 에 관한 실험적 연구를 통한 결론은 다음과 같다.

- 모든 실험체의 최대내력은 철근콘크리트 기둥의 설계 식을 적용할 경우 약 10~20% 이상 크게 나왔다. 이는 철근콘크리트 기둥에 의한 최대 축하중으로 평가가 가 능하다고 판단된다.
- 모든 실험체의 파괴양상은 콘크리트의 압축파괴 발생 후 플레이트의 배부름과 앵글의 국부좌굴에 의한 것으 로, 앵글의 국부좌굴을 억제함으로써 더 큰 연성을 확 보할 수 있을 것으로 판단된다.
- 3) ㄱ-형강의 단면크기가 증가할수록 최대하중이 증가하 였으며 특히, ㄱ-형강 단면의 길이보다는 두께의 증가 로 단면적이 커질수록 최대하중이 증가하는 경향을 보

그림 9. 각 실험체의 파괴 양상

였다.

- 4) 세장비(L/B)가 증가할수록 내력이 저하하는 경향은 보 이나 관계가 적은 것으로 나타났다. 이는 세장비에 따 른 비교가 일반적인 단주 설계 범위에서의 비교였기 때문이라 판단된다.
- 5) 편심이 증가할수록 내력은 감소하는 반비례 관계가 있으나, 내력비(실험최대하중/계산최대하중)와 편심은 관계가 없는 것으로 나타났다.

참고문헌

- 1. 대한건축학회, "콘크리트 구조 설계기준", 기문당, 1999
- 김성재 외 3인, "Steel-Concrete Column의 구조성능에 관 한 실험 연구", 한국강구조학회 논문집, 제14권, 6호, p.823~834, 2002
- 오명호 외 4인, "비조밀 단면을 사용한 SC 합성 기둥의 압축 내력에 관한 실험적 연구", 대한건축학회논문집 구 조계, 제20권, 10호, p.103~110, 2004
- DD ENV 1994 part1-1 "Eurocode 4-Design of composite steel and concrete structures, part 1-1 General rules and rules for buildings", 1994
- DD ENV 1994 part1-2 "Eurocode 4-Design of composite steel and concrete structures, part 1-2 General rules and rules for buildings", 1994
- Vincent. R, "Design and Application of partirally encased non-compact composite columns for highrise buildings", proc. composite constructions IV, engineering foundation, Banff, Canada, 2000
- Brian Uy, "Strength of concrete filled steel box columns incorporating local buckling", Journal of structural engineering, march, p.341~352, 2000